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Abstract

Simulations with four-way coupling are performed for two-dimensional gas–solid flows in a fluidized
bed. The motion of particles is treated by a Lagrangian approach and particles are assumed to interact
through binary, instantaneous, non-frontal, inelastic collisions with friction. The model for the interstitial
gas phase is based on the Navier–Stokes equations for two-phase flow. The numerical approach has been
validated with experimental investigations of the fluctuating motion in a shallow fluidized bed and of
cluster characteristics in a fast-fluidized bed. Further on, the influence of the interparticle collision char-
acteristics on the cluster structures and the fluctuating gas–solid motion in diluted flows has been inves-
tigated. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Gas–particle flows; Clusters; Fluctuating motion; Numerical simulation

1. Introduction

Heterogeneous structures of particles in fluid–particle flows have been observed by a number
of authors both in liquid–solid and gas–solid systems (Wilhelm and Kwauk, 1948; Kaye and
Boardman, 1962; Jayaweera et al., 1964; Matsen, 1982; Yerushalmi and Avidan, 1985; Fortes
et al., 1987; Cattieuw, 1992; Horio and Kuroki, 1994; Horio, 1995; Azario, 1995; Van Den
Moortel, 1998).

In fluidized systems most of the particles form aggregates, or clusters, which are regions of high
particle concentration compared to the mean solid concentration in the riser. This group of
particles moves as an ensemble with only minor relative motions (Fig. 1). Agglomerates are
particles held together by inherent interparticle forces and clusters are groups of particles held
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together as a result of hydrodynamic effects (Horio and Clift, 1992). In multi-particle systems, the
drag accounts for the combination of different effects. Kaye and Boardman (1962) showed that
interaction between particles cannot be ignored at solid concentrations higher than 0.05%. Based
on their experimental results of cluster formation in dilute suspensions, they divided the behavior
of particle suspensions into four distinct regions:

• free-settling at very low particle concentrations,
• a region of viscous interaction in which the group of particles fall faster than individual parti-

cles (solid concentrations varying from 0.1% up to 3%) due to cluster formation,
• an unstable region where clusters form and the return flow is irregular and localized; the two

phenomena are counteracting (up to a solid concentration of about 10%),
• a well-defined region at higher concentrations where return flow predominates and hindered

settling is the dominant feature of the suspension.

Similarities between the cluster formation in liquid–solid and gas–solid systems were evoked by
Chen et al. (1991). These authors conducted a similarity analysis to study the hydrodynamics of a
multi-particle suspended system. They recognized that the drag is the only source which promotes
relative motion between particles and considered that any two systems would have the same
tendency of clustering if the drags in these systems are hydrodynamically similar.

The study of clusters has received a great deal of attention during the last decade resulting in
a large number of numerical works on fluidized beds (Gidaspow, 1994; Tanaka et al., 1996;
Hoomans et al., 1998; Ito et al., 1998; Ouyang and Li, 1999). In a previous work, the axial solid
velocity of isolated particles was found to be significantly lower than for particles moving in
clusters during their period of formation (Helland et al., 2000; Helland, 2000). Fluctuations in the
solid velocity are related to the fluctuations in the solid concentration as accelerations of the solid
phase correspond to the bypass of clusters or denser solid phases. An experimental investigation
showed that the local solid velocities of up-flowing clusters increased linearly with their size (Van

Fig. 1. Cluster structures in a circulated fluidized bed (Van Den Moortel, 1998).
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Den Moortel, 1998). Thus the amplitude of the velocity fluctuations seems to depend on the cluster
size.

Shida and Kawai (1989) showed that dissipation of kinetic energy through particle-to-particle
collision causes clusters to form even without fluid effects. Tanaka et al. (1996) and Hoomans et al.
(1998) stated that the influence of the collision parameters play an important role in the formation
of clusters in diluted vertical risers. McNamara and Young (1994) studied numerically the clus-
tering behavior as a function of inelastic collisions. They distinguished three different regimes
depending on the restitution coefficient: kinetic regime, cluster regime and the inelastic collapse
regime where the particles are stuck together with no relative motion.

In this paper, the numerical approach has been validated by comparison of experimental works
of the oscillating motion in a shallow fluidized bed (Clark et al., 2000) and of the cluster char-
acteristics in a fast-fluidized bed (Sharma et al., 2000). Once validated, the influence of the col-
lision characteristics on the fluctuating behavior and the cluster structures in diluted gas–particle
flows have been investigated.

2. Physical model

2.1. Equations for the fluid phase

The Eulerian/Lagrangian approach computes the Navier–Stokes equation for the gas phase
and the motion of individual particles by the Newtonian equations of motion. For the gas phase,
we write the equations of conservation of mass and momentum:

@ðeqGÞ
@t

þr � ðeqG~uuGÞ ¼ 0; ð1Þ

@ðeqG~uuGÞ
@t

þr � ðeqG~uuG~uuGÞ ¼ �er � ðpIÞ þ r � esG þ eqG~gg �
XNpðV Þ
i¼1

~ffdrag;i; ð2Þ

where~gg is the gravity acceleration, p is the gas pressure,~uuG is the gas velocity, e is the void fraction
or porosity, qG is the gas density, sG is the gas stress tensor and ~ffdrag is the volumetric drag force.
The coupling term

PNpðV Þ
i¼1

~ffdrag;i between the gas and the particle phase is estimated as the sum of
the drag on each particle within the corresponding fluid control volume (Crowe et al., 1977). The
meaning of turbulence in gas–particle laden flows has been subject to many discussions (Peirano,
1998; He and Simonin, 1994; Elghobashi, 1994; Lavieville, 1997). In order to simplify the prob-
lem, we suppose that the dissipation term of the gas phase due to the turbulence in this config-
uration is negligible as inertia of the particles damps out the high frequency turbulent scales in the
gas phase.

2.2. Equations for the solid phase

In discrete particle models for each individual particle an equation of motion is solved during
the free flight phase:

mi
d~vvi
dt

¼ mi~gg þ~FFdrag � Vprp; ð3Þ
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where mi, vi and Vp represent, respectively, the mass, the velocity and the volume of the ith particle
and the right-hand side the sum of the forces acting on the ith particle; the first term is due to
gravity, the second due to drag between the gas and solid phase and the third the pressure gradient
force. The unsteady forces have been neglected due to the high solid to gas density ratio. The slip/
rotation or Magnus lift force and the slip/shear or Saffman lift force have also been neglected
due to the lack of knowledge in many-particle systems. The drag force is quantified through the
equation:

~FFdrag ¼
Cd

8
pd2

pqGe2j~uuG �~vvijð~uuG �~vviÞ ¼
Cd;i

8
pd2

pqGj~uuG �~vvijð~uuG �~vviÞe2f ðeÞm; ð4Þ

where Cd is the drag coefficient and dp is the particle diameter. Schiller and Naumann (1935) give
the drag coefficient Cd;i on a single sphere:

Cd;i ¼
24ð1þ 0:15Re0:687p Þ=Rep; Rep < 1000;

0:44; Rep P 1000;

�
ð5Þ

where Rep is the particle Reynolds number

eqGj~uuG �~vvijdp
lG

:

Most of the data for particle drag in many-particle systems have been inferred from sedi-
mentation and uniform fluidization studies. Two opposing clustering effects have been observed
depending on the concentration of particles. In regions with few particles distributed non-uni-
formly, the descent of a given particle can create a velocity field throughout the fluid which tends
to decrease the drag of all particles near it due to bypassing of return flow (Gunn and Malik, 1967;
Kaye and Boardman, 1962). On the other hand, if the particles are more or less uniformly dis-
tributed through the fluid, the restriction of the flow spaces between the particles in denser zones
results in steeper velocity gradients of the gas phase, thus greater shearing stresses and an increase
in resistance of the gas flow. f ðeÞ is a porosity function correcting the terminal velocity or the slip
velocity of a particle due to the presence of other particles (hindered settling effect) as they affect
the flow pattern in a uniform suspension (Richardson and Zaki, 1954):

f ðeÞ ¼ e�n ð6Þ
with

n ¼ log Remf=Retð Þ
log emf

; ð7Þ

where Remf is the Reynolds number at minimum fluidization (drag equals the weight of the
particles in the settled bed at maximum concentration, e ¼ emf , i.e., minimum fluidization con-
dition), and Ret, the Reynolds number at terminal velocity Ut;0 (drag equals the weight of an
isolated particle e ¼ 1).

If the restricted flow within the cluster were uniformly distributed in a manner similar to the
original flow away from it, n would be unity. However, the interstitial gas flow will be unevenly
distributed within the cluster due to different physical conditions from particle to particle, thus the
value of n results from an averaging of these effects. Thus its value depends on the nature of the
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interstitial gas flow (laminar/turbulent) and this was discussed thoroughly in the paper of Maude
and Whitmore (1958). Experimental workers have reported values of n between 2 and 4 for
spheres in turbulent flow; n close to 5 for equi-sized, equi-density spheres in creeping flow; and n
between 7 and 10 for rough particles in creeping flow. The value of m (Eq. (4)) varies between 1
and 2 depending on the particle Reynolds number as the porosity function corrects the terminal
velocity or the slip velocity in a fluid–solid suspension (Ut ¼ Ut;0en and Umf ¼ Ut;0enmf (minimum
fluidization velocity)). The parameter m is equal to 1 for laminar interstitial flow ðRep < 1Þ, 2
for turbulent interstitial flow ðRep > 1000Þ and an intermediate value in the transition regime
ð1 < Rep < 1000Þ. Based on these results Maude and Whitmore (1958) and Wen and Yu (1966)
proposed a general relation for the sedimentation and fluidization for mono-dispersed spheres in
laminar (m ¼ 1 and n ¼ 4:7), intermediate and turbulent interstitial regimes (m ¼ 2 and n ¼ 2:35).
Their drag function is used in this study and can be expressed:

Cd ¼ Cd;if ðeÞm ¼ Cd;ie
�4:7: ð8Þ

Different drag corrections are used in literature and having in common an increasing drag
coefficient with particle concentration.

Eq. (3) can be rewritten as:

d~vvi
dt

¼~gg þ 1

siG
ð~uuG �~vviÞ �

1

qp

rp ð9Þ

with

siG ¼
qpd

2
p

18lGð1þ 0:15Re0:687p Þ e3;7 ð10Þ

valid in the laminar and the transition regime ðRep < 1000Þ.
The particle relaxation time siG decreases exponentially as the local porosity decreases indi-

cating that the drag force influences the fluid–particle flow radically stronger as solid concen-
tration increases.

2.3. Collision model

In particulate multiphase flows, collision occurs between the particles or between the particle
and the wall. A collision without permanent deformation or heat generation is called an elastic
collision. Otherwise, the collision is inelastic and energy loss occurs mainly in the form of per-
manent deformation suck as particle breakage and frictional heat loss (Fan and Zhu, 1998). The
collision model proposed by Wang and Mason (1992) is used to compute the dynamics of in-
stantaneous inelastic non-frontal collisions with friction based on three constant coefficients. The
first coefficient e characterizes the incomplete restitution of the normal component of the relative
velocity at the point of contact. The second l arises in collisions involving sliding and has been
described by Coulomb friction. The third b arises in collisions that return a fraction of the energy
stored in the elastic deformation of both surfaces to the component of the contact velocity tangent
to the spheres.
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We consider two particles of diameter d1 and d2 and with masses m1 and m2. The positions of
the sphere centers are described by the vectors~rr1 and~rr2. The unit normal~nn at the contact point is
defined by:

~nn ¼ ~rr1 �~rr2
j~rr1 �~rr2j

: ð11Þ

The relative velocity~vvc between the two particles at the contact point is given by:

~vvc ¼~vv1 �~vv2 �
d1
2
~xx1

�
þ d2

2
~xx2

�
	~nn; ð12Þ

where~vvi and ~xxi are, respectively, the translation and angular velocities before impact. The impact
angle c is defined as the angle between the normal~nn and the relative velocity~vvc such that c 2 ½p

2
; p�.

Fig. 2(a) shows the situation of two particles before collision with ~xx1 ¼ ~xx2 ¼~00. We con-
sider the conservation of kinetic momentum of translation during the collision where~vv0i represent
the velocities after collision:

D~PP ¼ m1ð~vv01 �~vv1Þ ¼ �m2ð~vv02 �~vv2Þ: ð13Þ

The normal component of D~PP does not affect the angular velocities. However, the tangential
component D~PP ðtÞ provokes a variation of the rotational momentum. Fig. 2(b) represents the sit-
uation after impact. We can calculate the velocities after impact if we know the variation of
momentum D~PP :

~vv01 ¼~vv1 þ
D~PP
m1

; ð14Þ

~vv02 ¼~vv2 �
D~PP
m2

; ð15Þ

Fig. 2. Two particles before (a) and after (b) impact.
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~xx0
1 ¼ ~xx1 �

d1
2I1

~nn	 D~PP ; ð16Þ

~xx0
2 ¼ ~xx2 �

d2
2I2

~nn	 D~PP : ð17Þ

The Coulomb friction law neglects the fact that an object can pivot on another object. Instead
of developing a complex model, it is common to introduce a tangential restitution coefficient b.
Foerster et al. (1994) showed that the variation of momentum D~PP during impact could be written:

D~PP ¼ �m12ð1þ eÞ~vvðnÞc � 2

7
m12ð1þ bÞ~vvðtÞc ; ð18Þ

where m12 ¼ ðm�1
1 þ m�1

2 Þ�1
is the reduced mass. It is defined that e ¼ 1 for the normal impact of

perfect elastic spheres (no loss of kinetic energy), while e ¼ 0 for the normal impact of perfect
plastic spheres. The coefficient of restitution in an impact depends not only on the material
properties of the colliding objects but also on their relative impact velocity (Gorham and Kharaz,
2000). In this study, we suppose that the coefficient of restitution is independent of the relative
impact velocity.

For great values of the impact angle c P c0 (micro-slip region), the tangential restitution co-
efficient for glass spheres was found b0 2 ½0:35; 0:50�. For small impact angles c6 c0, we define
b1 ¼ �1� ð7=2Þlð1þ eÞ cot c. This is the sliding region where the interaction between the par-
ticles during impact can be described by the Coulomb friction coefficient l and the restitu-
tion coefficient e. Foerster et al. (1994) showed experimentally that the model describes well the
behavior of the impact between glass spheres over a wide range of incident angles.

3. Numerical solution technique

Eqs. (1) and (2) are solved by a finite volume method. The SIMPLE scheme is used as iterative
solution procedure (Patankar, 1980). A staggered grid is used with velocity components stored at
the control volume surfaces and the scalar variables at the center. The integration of the con-
servation equations is performed using the Quick scheme in space and an implicit scheme in time.

The velocity components of the particles and their positions are calculated directly after Eq. (9).
We use a semi-implicit method in order to avoid iterations on the velocities:

~vvi jtþDtp ¼
~vvi jt
Dtp

 
þ~gg þ

~uuG jtþDtf

sigð~uuG jtþDtf
;~vvi jt; e jtÞ

� 1

qp

~rrp jtþDtf

1þ Dtp
siGð~uug jtþDtf

;~vvi jt; e jtÞ

, !
Dtp: ð19Þ

Each particle’s corresponding gas velocity and porosity in Eq. (19) are estimated by linear in-
terpolation depending on its position within the fluid control volume (FCV). Two time scales are
distinguished in the model, which means that two different time steps are used. A fluid time step
Dtf is used to solve the equations for the fluid phase. This time step is chosen to be smaller than the
particle relaxation time siG at maximum packing concentration. Within the fluid time step several
particle time steps Dtp is used for the hard-sphere particle simulations. A minimum particle time
step Dtcp is defined such that any particle having the actual maximum gas velocity only can pass a
length equal to 20% of the particle diameter:
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Dtcp ¼
0:2dp

max j~uugj
: ð20Þ

This calculated time step Dtcp is used if it is less than the particle time step Dtp defined by the user.
The fluid control volume is taken large enough to have a representative elementary volume in

order to estimate the porosity accurately, but little enough to have small changes in flow prop-
erties. Once the particles have been moved by interaction with the gas and gravity (Eq. (9)), we
start the search of overlapping between particles within the riser in order to treat the collision
dynamics. In order to save CPU time several particle control volumes (PCV) within the FCV are
used. We have developed an algorithm for detection of particle overlapping within each PCV.
Every particle within a PCV (i particles) and its adjacent PCVs (j–i particles) are included in a list
of j particles (Fig. 3). The list includes only the adjacent PCVs in one direction (Fig. 4), however,
in the next particle time step, we change the direction of sweeping through the numerical domain.

Fig. 3. Algorithm for detection of particle overlapping.

1 4

13

FCV

PCV

Fig. 4. Adjacent PCVs included in the collision list.
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We try to include as many PCVs within an FCV as possible in order to make the collision list as
small as possible. The minimum size of the PCV is only limited by the particle size.

For the first particle in the collision list, we search for overlapping with the other j� 1 particles.
When a first overlapping has been detected, we treat the collision dynamics for the two particles
involved. For the first particle the search for overlapping is terminated. Then, we repeat the
searching procedure for the next ði� 1Þ particles in the list. For these particles, we only search for
overlapping with the subsequent particles. When all of the i particles within the respective PCV
have undergone the procedure, we repeat the same treatment for the next PCV until every col-
lision list for all the PCVs in the calculation domain has been treated.

By this method, there is a risk of missing some collisions in the denser particle regions. Nev-
ertheless, this method seems to be efficient as no or an insignificant fraction of particle overlapping
is observed even in zones of high particle concentrations.

The value of the contact angle, c� at the moment of detection does not necessarily correspond to
the actual value c at the moment of contact (Fig. 5). If numerical overlapping occurs, the particle
positions are rearranged with the aid of the relative velocities, and the new positions are assigned
to the actual moment of contact, then the collision dynamics is calculated inducing a change of the
translation and rotation velocities and the position of the two particles.

The two-dimensional porosity in a computational cell is the ratio of the surface occupied by the
gas to the surface of the fluid control volume DS. If Si is the surface of particle i inside a com-
putational cell, then the porosity in this cell is:

Fig. 5. Strategy of collision dynamics calculation.
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e2D ¼ 1�
XNc

i¼1

Si=DS ð21Þ

The porosity calculated in this way is based on a two-dimensional analysis, which is inconsistent
with the applied empiricism in the calculation of the drag force exerted on a particle. Therefore,
we utilize a pseudo-three-dimensional concept in which we assume the depth of the bed equal to
the particle diameter. Thus the porosity estimation is corrected in order to use the drag force for a
sphere.

Fig. 6. Numerical procedure of the gas–particle flow resolution.
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e3D ¼ 1� 2

3
ð1� e2DÞ: ð22Þ

The numerical procedure can be schematized as shown in Fig. 6. The gas motion is calculated at
instant t þ Dtf with the drag force estimated at instant t. Then the particle positions are calculated
at the next particle time step t þ Dtp, followed by the treatment of the collision dynamics. After
finding the new velocities and positions of all particles at instant t þ Dtf , the void fraction is
estimated and the drag forces on every particle summarized within each fluid control volume.

Clusters are certainly three-dimensional structures in the riser, thus experimental and two-
dimensional numerical results may not be quantitatively comparable.

The air inlet is modeled as one-dimensional uniform flow. In the simulations, the outlet is
located at the top of the riser where a continuity condition is used for the gas phase. The particles
leaving at the top are simultaneously introduced at the bottom of the riser at random positions
with zero velocities. A no-slip condition is used for the gas phase at the walls and the particles are
allowed for frontal collisions at the wall controlled by the wall coefficient of restitution ew.

4. Results and discussion

4.1. Validation of the numerical approach

4.1.1. Oscillations in a shallow fluidized bed
In this section, we report a study of comparison between numerical and experimental results of

the dynamic behavior in a shallow fluidized bed. The different parameters used in this study are
presented in Table 1. Clark et al. (2000) measured the pressure frequency of the large-scale layer
oscillations as a function of bed depth (between 3 and 7 particles deep).

Table 1

Parameter settings

Superficial gas velocity 0.15 m/s

Particle diameter, dp 150 lm
Density (particle, gas), qp, qG 8800 kg=m3, 1:2 kg=m3

Gas viscosity, lG 1:8	 10�5 kg=m=s
Restitution coefficient, e 0.9

Wall rest. coeff. ew 0.9

Tangential restitution coefficient, b 0.5

Coulomb friction coefficient, l 0.1

Riser width, D 0.15 m

Riser height, H 0.15 m

Number of particles 800

Grid number ðnx; nyÞ FCV: (15, 15)–PCV: (3, 3)

Rep 25

Minimum siG 0.008 s

Fluid time step Dtf ¼ 10�5 s

Particle time step Dtp ¼ 10�6 s
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These large-scale fluctuations occur due to formation of bubbles during fluidization and their
collapsing at the surface. For superficial gas velocities below the terminal velocity, an isolated
particle is at rest at the bottom of the riser. When increasing the number of particles in its
neighborhood, we observe a motion of particles within the riser. This is due to both an increase in
gas velocity as the efficient surface decreases and, more important, an increase in drag due to
greater shearing stresses as the flow spaces between the particles are restricted. If we have locally
perturbations of the porosity within the bed, the drag is increasing where the particle phase is
denser. This gives rise to particle zones of different accelerations and we experience a formation
of void zones or ‘‘bubbles’’ in regions of higher accelerations (Fig. 7). Once developed the gas
chooses the easiest way up, thus an exceed of gas flow in the void zone and the bubble increases in
size. When the bubble rises, there is a raining of particles from its roof due to smaller particle
group effect on the drag for the particles situated at the bubble interface (self-sharpening effect due
to an important porosity gradient). When loosing the grip of the dense particle group, the in-
terfacial particles behave as single particles falling down as gravity dominates their drag and
raining is observed. When the bubbles erupt at the bed surface, the surrounding particles are
ejected upwards in the riser. Thus the particles are more or less isolated with fewer influences of
the many-particle effect on the drag force. The particles drop back into the bottom zone as gravity

Fig. 7. Time sequence of the oscillating behavior (t ¼ 20–105 ms).
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dominates the drag for superficial gas velocities below the terminal velocity. This gives rise to a
fluctuating gas–particle motion in the fluidized bed. Earlier works have been concentrated on the
origin of this fluctuating motion and the prediction of the fluctuation frequency (Hiby, 1967;
Baskakov et al., 1986; Roy et al., 1990). Previous theories to predict oscillations in a fluidized bed
give a measure of the natural frequency of oscillations. Baskakov et al. (1986) treated the fluid bed
like liquid oscillating in a U-tube with a frequency of oscillation equal to 1

p

ffiffiffiffiffiffiffiffiffiffiffiffi
g=hmf

p
, where hmf is

the bed height at minimal fluidization condition. This is the characteristic time scale of a particle
dropping behind the bubble a distance close to the bed height.

Fig. 8 represents the time evolution of the pressure drop in the bed. The pressure oscillates
around an average value equal to 60 Pa with a period between 30 and 40 ms. The theoretical
pressure drop based on the bed weight is equal to 54 Pa. When comparing Figs. 7 and 8, we
observe that maximum pressure drop corresponds to the moment of bubble formation (t ¼ 20, 60
and 90 ms). The bed expands and the fluid ‘‘chooses’’ a preferential route with smaller resistance
and the pressure drop decreases to value below the total bed weight until the bubble eruption at
the bed surface. Then, a new cycle starts with a maximum pressure drop.

The numerical results show a period of oscillation close to 35 ms (29 Hz). This value is com-
parable with the theory proposed by Baskakov et al. (1986) (32 Hz) and the measured frequency
from the experimental results of Clark et al. (2000) (32.5 Hz) when the bed height is equal to 1
mm. The numerical approach describes the evolution of the pressure fluctuations measured by
others in a shallow bed. This may be explained by the fact that the three-dimensional effects are
not so important in this experimental configuration.

4.1.2. Cluster characteristics in a fast-fluidized bed
Sharma et al. (2000) investigated the effect of particle size and superficial gas velocity on the

duration time, occurrence frequency, time-fraction of existence and solid concentration in clusters
by capacitance-probe measurements of instantaneous local solid concentration in a 15 cm fast-
fluidized bed. Their cluster definition was based on the following three guidelines given by Soong
et al. (1993):
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Fig. 8. Time evolution of the pressure drop in the fluidized bed.
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• The solid concentration in a cluster must be significantly above the time-average solid concen-
tration at the given local position, for the given operating condition.

• This perturbation in solid concentration due to clusters must be greater than the random back-
ground fluctuations of the solid fraction.

• This concentration perturbation should be sensed for sampling volume with characteristic
length scale greater than one to two orders of particle diameter.

Sharma et al. (2000) proposed the following criteria for the period of cluster life:

• The cluster is detected once the instantaneous solid concentration is greater than two times its
standard deviation (2r).

• The starting time of a cluster is the last time its density exceeds the mean density before satis-
fying the 2r criterion.

• The ending time of a cluster would be the first time the density falls below the mean solid con-
centration, after falling below the 2r limit.

The numerical and experimental results of three superficial gas velocities and a particle di-
ameter of 120 lm have been compared. All studies were made at a constant solid flux close to
75 kg=m2=s. In order to save CPU time, we reduced the riser height and diameter. The numerical
results represent the flow behavior in the upper part of the riser where the axial solid concen-
tration profile is constant. Sharma et al. (2000) showed that the axial pressure profiles were linear
after a 1.9 m distance from the riser feed point. Their experiments were carried out at a height of
4.5 m above the riser feed point. The parameter settings are summarized in Table 2.

To illustrate the application of the criterion of Sharma et al. (2000), Fig. 10 shows an expansion
of the transient signal for the numerical run plotted in Fig. 9, from 1.00 to 1.14 s. Fig. 10 rep-
resents the auto-scaled solid concentration e�s , which is defined as:

Table 2

Parameter settings

Particle diameter, dp 120 lm
Density (solids, gas) qp, qG 2400 kg=m3, 1:2 kg=m3

Gas viscosity, lG 1:8	 10�5 kg=m=s
Superficial gas velocity 4.0, 4.9, 6.6 m/s

Restitution coefficient, e 0.97

Wall rest. coeff. ew 0.85

Tangential restitution coefficient, b 0.5

Coulomb friction coefficient, l 0.1

Riser width 0.075 m

Riser height 0.5 m

Total solids concentration 1%

Grid number ðnx; nyÞ FCV: (30, 100)–PCV: (15, 30)

Rep 10

Minimum siG 0.002 s

Fluid time step Dtf ¼ 5	 10�4 s

Particle time step Dtp ¼ 5�10�5 s
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e�s ¼
es � es

r
: ð23Þ

On this scale, the time-averaged solid concentration is the zero ordinate and the vertical scale
represents multiples of the standard deviation. Fig. 10 shows the transient signal relative to the
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Fig. 10. Short-time scale trace of the auto-scaled solid concentration in the center of the riser (ðx; yÞ ¼ (3.75 cm, 37.5

cm), Ug ¼ 4:9 m=s).

Fig. 9. Transient variations in solid concentration in the center of the riser (ðx; yÞ ¼ (3.75 cm, 37.5 cm), Ug ¼ 4:9 m=s).
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time-mean and to the 2r threshold. This small sample illustrates two clusters during the 0.14 s
interval. In particular, one cluster is observed between times Ta and Tb.

In the following, we have compared the parametric effect of superficial gas velocity on different
characteristics of clusters in the center of the riser: number-averaged cluster duration time, fre-
quency of cluster occurrence and time fraction of cluster existence. Referring to Fig. 10, the time
length si ¼ Tb � Ta is the duration for which the ith cluster is observed. The number-averaged
duration time is then:

s0c ¼
Pn

i¼1 si
n

; ð24Þ

where n is the total number of clusters detected in an observation period s (s ¼ 5 s simulation
time). The frequency of cluster occurrence ðNÞ is the frequency at which clusters are observed at
the sampling volume, calculated as the average number of clusters observed per second, over the
total observation time, s. The cluster existence time fraction ðF Þ is the fraction of total time when
clusters exists at the sampling volume. This quantity is calculated as the ratio of total cluster
duration time to total observation time.

A parametric plot of ðNÞ versus superficial gas velocity presented in Fig. 11 shows that the
frequency of cluster occurrence is between 6 and 9 clusters/s for the experimental results while it
varies between 7 and 12 clusters/s for the numerical results.

In Fig. 12, we have presented the values of the cluster duration time in the center of the riser.
The experimental results show an increase in duration time with the superficial gas velocity (from
10 to 16 ms) while the numerical results indicate values between 12 and 15 ms with no obvious gas
velocity trend. Nevertheless, the results show up to have the same order of magnitude.

Sharma et al. (2000) raised an interesting question in their paper: what fraction of the time do
clusters exist at a given position, and what is the effect of the superficial gas velocity and particle
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Fig. 11. Frequency of cluster occurrence in the center of the riser: ðx; yÞ ¼ (3.75 cm, 37.5 cm).
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diameter on this fraction? In their paper, they presented only cross-section averaged time fractions
and not local time fractions. They found that neither gas velocity nor particle diameter affected
the time fraction of cluster presence. In six different cases, all values were found to lie between 0.16
and 0.18. As they claimed, we should expect that a 65% variation of gas velocity would alter the
population density of clusters and thus affect the time fraction. Their experimental results show
that the time duration of a cluster in the wall region is of an order of magnitude greater that those
in the core zone of the riser. The clusters are likely to be trapped closed to the walls, thus the cross-
averaged value of cluster characteristics are strongly affected by wall effects.

In Fig. 13, we show the local time fraction of cluster existence in the center of the riser versus
superficial gas velocity. These numerical results show a decrease in the local time fraction of about
50% when increasing the gas velocity (from 0.15 to 0.10). Ouyang and Li (1999) reported a similar
tendency in a numerical study. Clusters became smaller when increasing the superficial gas ve-
locity, until they nearly vanished at a sufficient high gas velocity.

The numerical approach describes fairly well different cluster characteristics observed experi-
mentally by Sharma et al. (2000) in a fast-fluidized bed. This comparative study shows that nu-
merical approaches can be complementary to experimental investigations.

4.2. Influence of the collision characteristics on the cluster structures in a diluted gas–particle flow

In this section, we carry out a study of the collision parameters and their influence on the
fluctuating bed behavior and the cluster structures. The parameter settings are summarized in
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Fig. 12. Number averaged cluster duration time in the center of the riser: ðx; yÞ ¼ (3.75 cm, 37.5 cm).
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Table 3. Fig. 14 shows a time series of the gas–particle flow in the lower part of the riser. We
observe cluster structures similar to those observed experimentally (Fig. 1). The clusters exhibit
horseshoe shapes heading upwards or downwards in the riser. The wall regions behave as col-
lectors of down falling clusters.

Fig. 15 represents a snapshot of the riser at different resolutions. The form of the clusters in the
core zone corresponds to the mean gas velocity profile. Once the particles taking part of the
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Fig. 13. Cluster existence time fraction time in the center of the riser: ðx; yÞ ¼ (3.75 cm, 37.5 cm).

Table 3

Parameter settings

Particle diameter, dp 120 lm
Density (solids, gas) qp, qG 2400 kg=m3, 1:2 kg=m3

Gas viscosity, lG 1:8	 10�5 kg=m=s
Superficial gas velocity 2.0 m/s

Restitution coefficient, e 0.3–1.0

Wall rest. coeff. ew 0.85

Tangential restitution coefficient, b 0.5

Coulomb friction coefficient, l 0.1–0.7

Riser width 0.05 m

Riser height 1 m

Total solids concentration 1.5%

Grid number ðnx; nyÞ FCV: (20, 100)–PCV: (17, 22)

Rep 10

Minimum siG 0.002 s

Fluid time step Dtf ¼ 10�3 s

Particle time step Dtp ¼ 2	 10�5 s
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clusters are stuck in the wall region, they drop back in the bottom zone collecting particles on
their way down. In this way, the wall clusters seem to be denser than the core zone clusters.

Fig. 16 shows the structure of clusters for different values of the restitution coefficient. The
inelastic collisions have a significant effect on the density of the clusters as dissipation of kinetic
energy decreases the dispersion of particles and the relative motion between particles. When in-
creasing the inelasticity of collisions, the clusters have a higher concentration of particles, they
decrease in size and are easier to distinguish from the average gas–particle flow structure. Fig. 17
represents the local porosity of the cluster in the core zone as a function of the restitution co-
efficient. When decreasing the restitution coefficient, the local porosity within the cluster decreases
towards the value of maximum packing (inelastic collapse). If such conditions are reached, the

t = 0.15 st = 0.10 s t = 0.20 s t = 0.25 s t = 0.30 st = 0 s t = 0.05 s t = 0.15 st = 0.10 s t = 0.20 s t = 0.25 s t = 0.30 st = 0 s t = 0.05 s

t = 0.35 s t = 0.40 s t = 0.45 s t = 0.50 s t = 0.55 s t = 0.60 s t = 0.65 s

Fig. 14. Time series of the gas–particle flow in the riser. y: (0–30 cm).
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particles within the cluster would be in contact over a longer period and interparticle forces (Van
der Waals, liquid bridge forces) should be considered for completeness of the study.

For the denser clusters, the local pressure drop increases, and the gas phase tends to round the
obstacle. Therefore, preferential routes are created in the gas–particle flow, giving rise to strong
hydrodynamic fluctuations due the coupling between the phases.

Fig. 18 shows the influence of the restitution coefficient on the standard deviation of the axial
particle velocity for different transversal positions in the riser. The wall region exhibits strong
fluctuations due to the appearance of dense clusters falling down along the wall, and it seems
difficult to study the influence of the collision parameters. However, in the core zone, there is a
tendency of stronger amplitudes of fluctuations when decreasing the restitution coefficient.

Fig. 19 shows the influence of the restitution coefficient on the mean value of the standard
deviation in the core zone of both the axial and transversal particle velocities. The amplitudes of
the axial components are about three times higher than the transversal, indicating an anisotropic
behavior of the gas–particle properties in the riser. Azario (1995) has observed such behavior
experimentally in a circulating fluidized bed.

The inelastic collisions show a strong influence on the fluidized bed behavior. The ‘‘small
scale fluctuations’’ due to inter-particle collisions decrease when increasing the inelasticity of the

Fig. 15. Cluster structures in the vertical riser: (left) y: (0–80 cm); (middle) y: (30–50 cm); (right): 1:25	 1:25 cm2.
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particles. This results in denser clusters leading to greater ‘‘large scale fluctuations’’ due to stronger
variations in local drag.

Fig. 16. Cluster structures as a function of the restitution coefficient. y: (30–50 cm). From left to right: e ¼ 1, e ¼ 0:97,
e ¼ 0:8 and e ¼ 0:3.
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When increasing the friction coefficient l, there is an increase in transversal momentum
transferred to rotational momentum due to collisions between particles. The results presented in
Fig. 20 show a negligible influence of this parameter. This can be interpreted by the fact that
transfer of momentum between particles during collisions in our configuration is dominated by
the coupling between the gas and particle phases due to drag.
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5. Conclusions

We have investigated numerically the gas–particle flow in a vertical two-dimensional configu-
ration. The numerical approach has been validated against instantaneous measurements of
the pressure in a shallow fluidized bed by comparing the dominant frequency of oscillations
and against instantaneous measurements of the solid concentration in a fast-fluidized bed by
comparing cluster duration time, frequency of occurrence and time fraction of cluster exis-
tence. The results show a reasonable agreement between the experimental and the numerical
approaches.

The following study of clusters shows that the gas–particle properties have a strong aniso-
tropic fluctuating behavior. This instability is linked to both hydrodynamical phenomena and
the inelastic interparticle collisions. We observe denser clusters when decreasing the restitu-
tion coefficient due to a smaller dispersion of particles during inelastic collisions. This de-
creases the local porosity within the clusters, which increases the amplitudes of fluctuations caused
by a stronger coupling between the phases due to the non-linear influence of local porosity on the
drag.
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